skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lu, Zhuoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AI-assisted decision making becomes increasingly prevalent, yet individuals often fail to utilize AI-based decision aids appropriately especially when the AI explanations are absent, potentially as they do not reflect on AI’s decision recommendations critically. Large language models (LLMs), with their exceptional conversational and analytical capabilities, present great opportunities to enhance AI-assisted decision making in the absence of AI explanations by providing natural-language-based analysis of AI’s decision recommendation, e.g., how each feature of a decision making task might contribute to the AI recommendation. In this paper, via a randomized experiment, we first show that presenting LLM-powered analysis of each task feature, either sequentially or concurrently, does not significantly improve people’s AI-assisted decision performance. To enable decision makers to better leverage LLM-powered analysis, we then propose an algorithmic framework to characterize the effects of LLM-powered analysis on human decisions and dynamically decide which analysis to present. Our evaluation with human subjects shows that this approach effectively improves decision makers’ appropriate reliance on AI in AI-assisted decision making. 
    more » « less
  2. In an era marked by rampant online misinformation, artificial intelligence (AI) technologies have emerged as tools to combat this issue. This paper examines the effects of AI-based credibility indicators in people’s online information processing under the social influence from both peers and “experts”. Via three pre-registered, randomized experiments, we confirm the effectiveness of accurate AI-based credibility indicators to enhance people’s capability in judging information veracity and reduce their propensity to share false information, even under the influence from both laypeople peers and experts. Notably, these effects remain consistent regardless of whether experts’ expertise is verified, with particularly significant impacts when AI predictions disagree with experts. However, the competence of AI moderates the effects, as incorrect predictions can mislead people. Furthermore, exploratory analyses suggest that under our experimental settings, the impact of the AI-based credibility indicator is larger than that of the expert’s. Additionally, AI’s influence on people is partially mediated through peer influence, although people automatically discount the opinions of their laypeople peers when seeing an agreement between AI and peers’ opinions. We conclude by discussing the implications of utilizing AI to combat misinformation. 
    more » « less
  3. AI-assisted decision-making systems hold immense potential to enhance human judgment, but their effectiveness is often hindered by a lack of understanding of the diverse ways in which humans take AI recommendations. Current research frequently relies on simplified, ``one-size-fits-all'' models to characterize an average human decision-maker, thus failing to capture the heterogeneity of people's decision-making behavior when incorporating AI assistance. To address this, we propose Mix and Match (M&M), a novel computational framework that explicitly models the diversity of human decision-makers and their unique patterns of relying on AI assistance. M&M represents the population of decision-makers as a mixture of distinct decision-making processes, with each process corresponding to a specific type of decision-maker. This approach enables us to infer latent behavioral patterns from limited data of human decisions under AI assistance, offering valuable insights into the cognitive processes underlying human-AI collaboration. Using real-world behavioral data, our empirical evaluation demonstrates that M&M consistently outperforms baseline methods in predicting human decision behavior. Furthermore, through a detailed analysis of the decision-maker types identified in our framework, we provide quantitative insights into nuanced patterns of how different individuals adopt AI recommendations. These findings offer implications for designing personalized and effective AI systems based on the diverse landscape of human behavior patterns in AI-assisted decision-making across various domains. 
    more » « less
  4. With the rapid development of decision aids that are driven by AI models, the practice of AI-assisted decision making has become increasingly prevalent. To improve the human-AI team performance in decision making, earlier studies mostly focus on enhancing humans' capability in better utilizing a given AI-driven decision aid. In this paper, we tackle this challenge through a complementary approach—we aim to train behavior-aware AI by adjusting the AI model underlying the decision aid to account for humans' behavior in adopting AI advice. In particular, as humans are observed to accept AI advice more when their confidence in their own judgement is low, we propose to train AI models with a human-confidence-based instance weighting strategy, instead of solving the standard empirical risk minimization problem. Under an assumed, threshold-based model characterizing when humans will adopt the AI advice, we first derive the optimal instance weighting strategy for training AI models. We then validate the efficacy and robustness of our proposed method in improving the human-AI joint decision making performance through systematic experimentation on synthetic datasets. Finally, via randomized experiments with real human subjects along with their actual behavior in adopting the AI advice, we demonstrate that our method can significantly improve the decision making performance of the human-AI team in practice. 
    more » « less
  5. Misinformation on social media poses significant societal challenges, particularly with the rise of large language models (LLMs) that can amplify its realism and reach. This study examines how adversarial social influence generated by LLM-powered bots affects people’s online information processing. Via a pre-registered, randomized human-subject experiment, we examined the effects of two types of LLM-driven adversarial influence: bots posting comments contrary to the news veracity and bots replying adversarially to human comments. Results show that both forms of influence significantly reduce participants’ ability to detect misinformation and discern true news from false. Additionally, adversarial comments were more effective than replies in discouraging the sharing of real news. The impact of these influences was moderated by political alignment, with participants more susceptible when the news conflicted with their political leanings. Guided by these findings, we conclude by discussing the targeted interventions to combat misinformation spread by adversarial social influences. 
    more » « less
  6. AI assistance in decision-making has become popular, yet people's inappropriate reliance on AI often leads to unsatisfactory human-AI collaboration performance. In this paper, through three pre-registered, randomized human subject experiments, we explore whether and how the provision of second opinions may affect decision-makers' behavior and performance in AI-assisted decision-making. We find that if both the AI model's decision recommendation and a second opinion are always presented together, decision-makers reduce their over-reliance on AI while increase their under-reliance on AI, regardless whether the second opinion is generated by a peer or another AI model. However, if decision-makers have the control to decide when to solicit a peer's second opinion, we find that their active solicitations of second opinions have the potential to mitigate over-reliance on AI without inducing increased under-reliance in some cases. We conclude by discussing the implications of our findings for promoting effective human-AI collaborations in decision-making. 
    more » « less